脱胎自 RISC-V,能把推理训练能效提高 1 万倍。
作者 | 美漪编辑 | 靖宇
OpenAI 的权力之争才刚刚落幕,一场关键交易悄悄浮出了水面。
据外媒《连线》(Wired)报道,在 Sam Altman 担任 OpenAI 的首席执行官期间,OpenAI 与 Rain AI 签订了一份价值 5100 万美元的意向书,承诺会在 Rain AI 的芯片上市后购买芯片。
Rain AI 是一家 AI 芯片初创公司,旨在大幅降低 AI 算力的成本。通过研发一种模仿人脑的工作方式的 AI 芯片——NPU,从而为 OpenAI 和 Anthropic 等 AI 公司提供「低成本、高能效的硬件」。
该公司称,「相比传统的 GPU,NPU 将为 AI 开发者(如 OpenAI)提供潜在的 100 倍计算能力,并在训练方面提供 10,000 倍的能效。」
鉴于,OpenAI 一直受困于算力短缺,也就不难理解,它会愿意花费大量资金,来确保自己的 AI 项目所需的芯片供应。
Rain AI 研发的芯片有什么特点呢?该公司又是如何显露头角的?这笔投资揭示了 Altman 和 OpenAI 在芯片领域怎样的布局?
01「类脑」AI 芯片Rain AI 的核心产品是基于神经拟态(Neuromorphic)技术的「类脑」AI 芯片——NPU。芯片旨在实现低耗、高效地处理信息,从而满足 AI 任务的苛刻计算需求。
它模仿了人脑的结构和功能,类似于大脑中的神经连接,建立在了人工突触相互连接的网络上。这种架构允许 NPU 以并行和分布式的方式处理信息,使其非常适合 AI 应用中的「计算密集型任务」。
而且,Rain AI 率先采用了数字内存计算(D-IMC)模式,进一步提升了 AI 处理、数据移动和数据存储的效率。
Rain AI 的 NPU 旨在以低功耗高效处理信息,满足 AI 任务的苛刻计算需求 | 图片来源:Rain AI 官网
此外,Rain 还为数字内存计算磁贴和软件栈,提供了知识产权(IP)许可机会,该 IP 是专门为要求超低延迟和高能效的设备上的 AI 工作负载而定制的,涵盖了长距离以太网 (Long Reach Ethernet, LRE) 的一系列计算用例,包括智能汽车、智能手表等。
针对自家产品,Rain 打出的 solgan 是「重新定义 AI 计算的极限」,并宣传「我们的 AI 加速器在速度、功耗、面积、精度和成本之间实现了创纪录的平衡」。
鉴于,Rain 所设计的「类脑」芯片(NPU)承诺具有高效和低耗的运行,这对于克服英伟达、AMD 等公司制造的重型芯片相关的「瓶颈」至关重要。
Rain AI 的创始人团队|Rain AI
有趣的是,Rain AI 的总部也位于旧金山,与 OpenAI 相距不到一英里。
公司成立的次年,Rain AI 就在种子轮融资中,获得了 500 万美元的融资,投资者包括知名的创业孵化器 Y Combinator。
彼时,Altman 正在担任 Y Combinator 的 CEO,同时还以个人名义向 Rain AI 投资了 100 万美元。一年后,OpenAI 通过了这份价值 5100 万美元的芯片购买协约。
截至 2022 年 4 月,经历了由沙特阿拉伯附属基金 Prosperity7 Ventures 领投的价值 2500 万美元的一轮融资,Rain 的总融资额达到 3300 万美元,估值也达到了 9000 万美元。
今年年初,该公司向潜在投资者「夸炫」其进展,表示预计本月就可以推出「测试」芯片,这将意味着芯片设计已经完成,可以开始制造。
Rain AI 还表示最早于明年 10 月可向客户提供第一批芯片,甚至向投资者强调,自己已经与谷歌、甲骨文、Meta、微软和亚马逊等科技巨头进行了高级谈判,以销售系统给它们。但对此,微软拒绝置评,其他公司没有回应置评请求。
简而言之,Rain AI 仍处于开发阶段,目前尚不清楚何时才能投入商用。尽管该公司的「类脑」芯片(NPU)技术前景广阔,支持者也备受瞩目,但它仍面临着许多挑战。
03 Open AI 的野心不管 Altman 投资 Rain AI 这番举动有没有私心在里头,芯片短缺确实是 OpenAI 面临的一大难题。
事实上,一年前,ChatGPT 刚刚发布不到一周,Altman 就感觉到计算成本「惨不忍睹」。之后,更是不止一次公开抱怨 AI 芯片的「残酷紧缺」和「令人瞠目」的成本。
像盘子一样大的芯片 | 图片来源:Cerabras 官网
今年初「硅仙人」Jim Keller 与「硅神童」Sam Zeloof 成立的 Atomic Semi(通过简化和缩小半导体工厂和集成电路原型,快速制造价格合理的芯片),Altman 也有关注,OpenAI Startup Fund 还参与了投资。
图片来源:Analytics India Magazine
此外,就在 Altman 被 OpenAI 解雇的前几周,还有消息称他正在试图筹集数十亿美元,创办一个新的芯片公司。
项目的详情还不得而知,只知道代号为「Tigris」,旨在与英伟达在 AI 芯片领域展开竞争。
据悉,为了「Tigris」项目,Altman 曾在中东筹集资金。地点的「巧合」,不禁让人怀疑这个项目和 Rain 是否有什么关联。
另外,Altman 还曾与包括芯片设计公司 Arm 在内的半导体高管进行过讨论,商讨如何尽早设计出新的芯片,为 OpenAI 这样的大语言模型公司降低成本。
而且,不止 Altman,OpenAI 也正在寻找更低成本造大模型的可能,从而摆脱对英伟达的依赖。
除了寻找像 Rain AI 这样的芯片供应商,对外投资之外,OpenAI 前段时间也开始尝试自研芯片,评估潜在收购目标,并招聘硬件相关岗位。
图片来源:OpenAI 官网
前不久,OpenAI 任命了前谷歌 TPU 的负责人,Richard Ho 为硬件主管,还聘请了不少编译器和内核方面的专家,并且正在招聘「数据中心设施设计专家」。
Richard Ho 将领导 OpenAI 的新部门,并且帮助优化合作伙伴的,数据中心网络、机架和建筑。
但这些前瞻性的投资布局,还是很难解决眼前的 GPU 短缺的问题,目前,OpenAI 大规模使用的还是英伟达的芯片。
据观察,OpenAI 正在动态的调整 ChatGPT 等产品的能力来节省算力。这也就不难理解,有网友最近发现 GPT-4 相比 GPT-3.5 更容易「偷懒」。
随着大模型的出现,人们开始关注大型 AI 模型数据中心的耗电情况。Rain 和其他一些芯片初创公司,旨在重新配置数据处理方式,从而减少传输需求,降低功耗。
谷歌、微软、AMD、英特尔、亚马逊,以及 Cerabras、Sambanova,Rain 等初创公司相继入局 AI 芯片未来,AI 算力供应的市场是否会有所变化?而 OpenAI 能否摆脱算力受制于人的局面?从芯片超长的周期来看,这些难题还将继续存在相当长的一段时间。
相关文章
猜你喜欢