TED负责人Chris对纽约时报没有报道ChatGPT表示震惊,马斯克也在下面奚落纽约时报应该改名叫“社会正义时报”
ChatGPT有多厉害?
GPT-3目前的能力已经接近人类,甚至超过人类了。
ChatGPT模型看起来比以往的人机对话模型更强大,例如,其敢于质疑不正确的前提和假设、主动承认错误以及一些无法回答的问题、主动给拒绝不合理的问题、提升了对用户意图的理解以及结果的准确性。与之前的GPT3不同,相比于此前海量学习数据进行训练,ChatGPT中,人对结果的反馈成为了AI学习过程中的一部分。
从OpenAI官网公布的API价格来看,收集莎士比亚作品集的价格在48-24000美元不等
训练阶段的沉没成本过高,也导致人工智能应用早期很难从商业角度量化价值,也就是算不好“经济账”。随着算力的不断提高、场景的增多、翻倍的成本和能耗,将成为横梗在所有公司面前的问题。尽管OpenAI的估值目前为200亿美元,但此前亦有观点认为OpenAI应该是一家万亿估值的公司,而这家公司目前阶段主要产品和技术仍停留在实验阶段。
尽管很多小规模的预训练模型在今天的人机对话领域已经有很多成功的商业应用,但像ChatGPT这样大规模的模型,在To B领域中部署的难度很高,部署速度慢、成本高,商业价值也不明确,因此仅能停留在搜索、文化、娱乐等应用领域。
容联云AI科学院院长刘杰对虎嗅表示,To B行业对人工智能要求更严肃、严谨,目前的人机对话内容主要集中在客服、外呼、营销等领域,需要有针对的模型库,利用BERT(预训练的语言表征模型)基础上的UniLM框架等规模小一些的模型进行快速训练。
刘杰认为,包括ChatGPT在内的NLP,在商业化上还处在一个螺旋上升的阶段,未来应用场景很广,但当下技术和商业模式还需要尽快找到一个“共振”的频率。
不过,也有很多人认为ChatGPT未来的应用领域未必局限在人机对话,可能会扩展到更多应用领域,例如程序问题的识别和搜索引擎等。只是不论是哪一点,其都无法避免那些商业化的难题。
依托云厂商生长
数据是一切AI算法、AI模型的原料。
依附于云厂商,显然是一种聪明的做法,原料越丰富,做出来的菜色更多样。
2019年,OpenAI收到来自微软的10亿美元投资,此后一直与微软保持紧密合作。ChatGPT和GPT 3.5的训练也都是基于微软的Azure AI的超算基础设施完成的。
凭借着大规模通用AI模型在实际应用中对算力的需求,Azure AI可以利用ChatGPT秀一波肌肉。
去年11月,微软宣布,OpenAI的GPT-3将通过新的Azure OpenAI服务提供给开发人员。大幅加强了微软在NLP方面的技术能力。OpenAI的直接竞争对手DeepMind则在2014年被谷歌母公司Alphabet收购。谷歌和DeepMind合作的主要项目之一,是后者开发的人工智能推荐系统,这也大大提高了谷歌数据中心的效率。
微软和谷歌在与顶级人工智能研究实验室的合作中收获颇丰,而在这方面亚马逊的AWS可能已经落后于另外两家云业务不那么出众的竞争对手。Gartner于2021年3月发布的关于云人工智能的Magic Quadrant报告发现,AWS远远落后于微软、谷歌和IBM等竞争对手。
不过,在人工智能研究方面,AWS在2017年也推出了自己的机器学习解决方案实验室,提供机器学习专业知识,用于识别和构建识别AWS客户端的机器学习解决方案。在今年9月还推出了一款据说在机器学习任务上表现优于GPT-3的seq2seq模型AlexaTM 20B。
人工智能发展的瓶颈
一位在人工智能领域耕耘多年的业内人士告诉虎嗅,人工智能领域一直以来面临的瓶颈是建立在基础理论之上的,对于算法和架构的突破——大家习惯了用筷子夹丸子,但有没有想过,可能用签子串,效率更高。90年代末期,正在攻读博士的他就经历了一次AI的浪潮,过去40年,发生在AI产业上有三次浪潮,每一次都是由于理论发展的瓶颈最终退潮。
另一个瓶颈是伦理道德。一提到人工智能的伦理道德问题,多数人会想到自动驾驶定责等严重的问题,一位人工智能领域投资人向虎嗅指出,如今自动驾驶的技术走在了法律法规的前面。而如今,随着生成式AI的逐步成熟,AIGC的版权以及AI的价值观问题都成了制约人工智能发展的大问题。
在人类与AI交流的过程中,AI如何学习,能否输出正确的价值观?
大规模训练部分取决于数据的质量,AI无法主观判断什么是正确的,所以AI很容易“学坏”。虽然ChatGPT在“防骗”方面有了很大进步,但它仍然会在“不怀好意”的围观群众诱导下表达出一些不那么“政治正确”的观点,这可能会是通用AI模型商业化的阻力之一。
正在改变与想要改变世界的人,都在 虎嗅APP
相关文章
猜你喜欢