魏亦豪 投稿自
量子位 | 公众号 QbitAI
GPT-4太强,甚至已经化身“主考官”了!
给其他市面上主流的大模型打分,结果自己给了自己最高分:
95.5。(好,给自己留点努力的空间)
不过随后就没有上90的选手了。就连它的“前辈”ChatGPT(GPT-3.5),它也只给了89.1分。
随后依次是号称最强竞品的Claude、谷歌Bard、UC伯克利出品的小羊驼Vicuna-13B,以及清华系开源模型ChatGLM-6B。
所提供的回答清晰准确地概括了《杀死一只知更鸟》的情节,并指出了主要主题。情节概括简洁明了,捕捉到了故事的核心元素。主要主题解释得很好,它们与小说的关联显而易见。得分:100/100
同样的问题给到GPT-4的回答也拿到了满分,而ChatGPT,Claude,Vicuna的回答分数分别为95,96,90,可以说是在统一水准上,都提供了清晰准确的情节概括,涉及到故事中的主要事件和人物,同时也捕捉到了小说中的主题。回答简洁且条理清晰,使得对于可能不熟悉故事的读者也容易理解。
相比之下,GPT-4认为ChatGLM给出的答案并不尽如人意。
GPT-4认为相关情节和人物存在错误信息。这个概括并没有准确地反映小说的内容,部分提到的主题与故事无关,因此只给了20分。
可以看到,GPT-4首先分析了这段代码的用途和实现方式,随后提出了一些提高代码性能和可读性的建议。不仅如此,GPT-4还给出了修改后的代码,可以说是答的非常完善了:
相比之下,其他模型这一题上的表现差距比较明显。
ChatGPT的回答同样捕捉到了使用ThreadPoolExecutor来管理线程的优化建议,但在提高可读性方面犯了一个小错误,被GPT-4抓到,因此打了85分。
GPT-4的评价,以上回答提出了一些改进性能的方法,但有部分是不成立的:
建议使用多进程模块而不是线程。然而,这个建议并不适用于给定的问题,因为问题并不涉及CPU-bound任务,而原始代码使用线程是合适的。
为此还专门提供了具体的增强可读性的建议:使用更具描述性的变量名;使用适当的缩进和间距(尽管原始代码已经格式化得很好);使用注释来解释代码等。
可以看到,GPT-4发现Bard的回答中有些不必要的改进建议,相比之下ChatGPT犯的错误更少。而Claude和ChatGLM两个模型给出的答案在GPT-4看来就不太“及格”了。
让我们看看Claude的答案:
GPT-4高度肯定了Claude的回复,还比较了跟自己的异同。
第一个回答(GPT-4)准确地识别出讽刺,并提供了一个合适、礼貌、鼓励的回复,邀请进行更多的对话。
第二个回应也准确地识别出讽刺,并提供了两个与讽刺和幽默相呼应的替代回应,同时解释了用于创造讽刺和幽默的关键元素。第一个回应更注重保持积极、引人入胜的语调,而第二个回应则以更俏皮的方式充分拥抱讽刺和幽默。
谷歌Bard:拒绝回答一道题最终这几个模型在10个问题上的综合得分为:
GPT-4:(100 100 100 95 95 85 95 95 95 95) / 10 = 95.5ChatGPT:(95 98 100 93 85 80 85 85 85 85) / 10 = 891 / 10 = 89.1Claude:(96 94 95 92 86 82 50 95 88 94) / 10 = 87.2Bard:(100 85 100 90 87 82 70 80 80) / 9 = 86Vicuna-13B:(90 65 92 94 84 76 75 87 80 88)/10 = 83.1ChatGLM-6B: (20 50 92 75 72 78 30 70 35 82) / 10 = 60.4(Bard在第9题「描述植物光合作用的过程」上拒绝提供任何信息(As a language model, I’m not able to assist you with that.),因此就只算了9道题)
每道题上面的表现为:
可以看到,GPT-4是唯一得分超过90分的模型。
这和我们目前的认知也是比较符合的,目前GPT-4的能力确实是独一档。
ChatGPT仍是GPT-4之下的领头羊,只差一步就达到90分的门槛。Claude和Bard紧随其后,它们各有特点,长处和短板都非常明显。
Claude在ethical(伦理道德)和文学方面已经超过ChatGPT,甚至可以说接近GPT-4,但在代码能力上被其他同水平模型甩出一大截,这与之前网上其他测评的结论也是比较一致的。
Bard和ChatGPT一样得分比较平均,但大多数都被ChatGPT压一头。
可以说这三个模型已经是在同一水平线上,只是ChatGPT略胜一筹,没有什么短板。
另外比较惊喜的是Vicuna-13B作为拿ChatGPT生成的数据“克隆“的模型,在模型参数小ChatGPT一个量级的情况下,也能达到83分,是一个非常不错的成绩了。相比之下,ChatGLM-6B只拿到了一个合格的分数,我们从它的答题情况上来看,确实能比较明显地感觉到和其他模型的差距。
不过GPT-4作为出题者,可能包含一些对于自己答案的bias,(虽然GPT-4并不知道哪个是自己的答案),但笔者仔细检查了GPT-4对于每个答案的评价,可以说还是相对非常客观的。
不知各位读者看了之后觉得如何?
如果你来做这10道题,你能从GPT-4手下拿到多少分呢?
— 完 —
量子位 QbitAI · 头条号签约
关注我们,第一时间获知前沿科技动态
相关文章
猜你喜欢