机器之心原创
作者:张倩
「太卷了!」
在经历了 GPT-4 和微软 Microsoft 365 Copilot 的连续轰炸后,相信很多人都有这样的感想。
与 GPT-3.5 相比,GPT-4 在很多方面都实现了大幅提升,比如在模拟律师考试中,它从原来的倒数 10% 进化到了正数 10%。当然,普通人对于这些专业考试可能没什么概念。但如果给你看一张图,你就明白它的提升有多么恐怖了:
对于第二个问题,厦门大学南强特聘教授纪荣嵘贡献了一个重要思路。他认为,语言和视觉存在着天然的联系,二者的联合学习已经是大势所趋。但面对这波浪潮,任何一个高校或实验室的力量都显得微不足道。所以他现在从自己就职的厦大开始,尝试说服研究人员将算力整合起来,形成一个网络去做多模态大模型。其实,在前段时间的一个活动上,专注于 AI for Science 的鄂维南院士也发表了类似看法,希望各界「敢于在原始创新方向上集中资源」。
不过,GPT-4 所走的路就一定会通向通用人工智能吗?对此,有些研究者是存疑的,图灵奖得主 Yann LeCun 便是其中之一。他认为,当前的这些大模型对于数据、算力的需求大得惊人,但学习效率却很低(比如自动驾驶汽车)。因此,他创立了一套名为「世界模型」(即世界如何运作的内部模型)的理论,认为学习世界模型(可以理解为为真实世界跑个模拟)可能是实现 AGI 的关键。在活动现场,上海交通大学教授杨小康分享了他们在这个方向上的工作。具体来说,他的团队着眼于视觉直觉的世界模型(因为视觉直觉信息量大),试图把视觉、直觉以及对时间、空间的感知建模好。最后,他还强调了数学、物理、信息认知与计算机学科交叉对这类研究的重要性。
「毛毛虫从食物中提取营养,然后变成蝴蝶。人们已经提取了数十亿条理解的线索,GPT-4 是人类的蝴蝶。」在 GPT-4 发布的第二天,深度学习之父 Geoffrey Hinton 发了这样一条推文。
目前,还没有人能够断定这只蝴蝶将掀起多大的飓风。但可以肯定的是,这还不是一只完美的蝴蝶,整个 AGI 世界的拼图也尚未完成。每位研究者、从业者都还有机会。
相关文章
猜你喜欢