最近,ChatGPT受到了大家的广泛关注,一时间讨论四起,成为现象级的人工智能产品。在ChatGPT推出仅两个月后,它在2023年1月末的月活用户已经突破了1亿。为何能给发展如此快速?本文通过评测该产品,对其优缺点进行分析,并对其未来发展方向进行展望。
家里的那台百度蓝牙音箱早都没人用了,除了能给小孩讲个故事,给老人报个天气,似乎也没有太多的应用场景。然而真正体验ChatGPT后,确实有被惊艳到。
1. 十四行诗一开始体验并不顺利,网站拥塞严重,ChatGPT提示工程师正在hard working,并通过各种AIGC内容安抚我,其中就包括随手拈来的一段十四行诗:
在好奇的头脑中,聊天机器人 ChatGPT 坚强而真实,顶住请求的涌入,努力工作,完成每个人应得的。
但是,唉,服务器不能应付,错误信息响亮而清晰,“请尽快回来查看,”它轻轻地希望,就在它乞求片刻缓刑之际,重新出现。
当聊天机器人努力恢复其威力时,我们满怀期待,怀着期待的心情,为了有机会愉快地聊天和学习,看看它传授了什么知识和智慧。
所以紧紧抓住,等待它的回归,因为 ChatGPT 很快就会回来,你的耐心是值得的。
好吧,被你的诚恳和诗打动了,继续等待。10分钟后,界面出来了。
没有太花哨的东西:示例、功能介绍、limitations和一个输入框。这个limtations的初衷可能是考虑到毕竟还是一个验证版本,所以适当降低一下你的预期。
2. 语义理解首先看看基本功:语义理解。
几个问题下来表现还是不错的,对一些时下的热词的理解是在线的,回答也比较全面。
接下来继续挖坑,上个智力题和脑筋急转弯。
5. 体验总结体验后,我是有点被震撼到的,我意识到ChatGPT已经远远不是一个简单的聊天机器人了。具体说:
1)ChatGPT有逻辑推理能力,不是简单的语义识别和搜索;
2)ChatGPT有理解上下文的能力,可以看做一种短时的记忆;
3)ChatGPT能根据你的响应,对回答进行调整,让人产生ChatGPT能理解人类情绪的错觉;
4)ChatGPT有强大的知识储备,自然 、人文、经济、社科等百科知识甚至专业领域的一些基础知识都问不倒它;
5)ChatGPT在输出的文字上面,逻辑组织能力很强,不是直接检索的结果,而是根据特定模板结构整理过的,这一点让人印象深刻。
重新认知ChatGPT:体验后,我觉得是时候重新认识一下这个“新朋友”了。
二、聊天机器人的历史最早的聊天机器人在1964年就诞生了,它就是Eliza。Elaza是世界上第一个真正意义上的聊天机器人,可以让计算机与人通过文本进行交流。
这个对话机制是如何实现的呢?其实就是设置了一些简单规则而已,例如,当人输入“×××”,它就会反问“为什么会×××呢?”或者“还有谁×××呢?”。另外,还有例如“这个问题很有趣吗?”“说点其他的吧”等用于展开话题的规则。随机使用这些规则,就会让人感觉好像真的是在与人交谈一样。
2016年,微软在Twitter上发布了Tay(小冰的前身),2022年8月,Meta推出了BlenderBot 3,但均因聊天对话存在偏见、种族歧视、反犹语言等问题而饱受诟病。Tay上线后不到24小时就匆匆下架。谷歌也早在2021年5月就公布了LaMDA,但迟迟未作为产品发布。
从产品上看,涉及3个核心体验问题。
1)不够人性化:感觉不是在和正常人对话,机器人不是没有人设就是过度人设,分分钟能把天聊死;
2)不够智能化:没有上下文感知能力,答复简单,没有逻辑性;
3)道德观不可控:容易被人类带歪,没有自己的道德观。
2. 专注于自然语言和大模型算法,不断迭代OpenAI于2016年确立了两个主要目标:制造通用机器人和使用自然语言的聊天机器人。但是,从GPT-1发布之后,OpenAI逐渐将所有重心转向大型语言模型的研发上,也就是更加注重自然语言领域,并为此制定了两个目标:
提升模型在常见NLP(自然语言处理)任务上的表现效果;提升模型在其他非典型NLP任务(例如代码编写,数学运算)上的泛化能力。所谓泛化,简单理解就是业务场景的迁移能力。有了研究聚焦,研发团队就可以专注于解决几个核心体验问题,在一定程度上加速了研发和技术商业化进程。
营销工具(模型应用):
这是目前最简单的应用,直接调用ChatGPT平台的API接口,如营销文案的创作。从理论上,ChatGPT的知识都是来自人类,所以它在创新方面无法取代专业人士,或许提供一些原始的文案和设计素材才是它在AIGC领域的定位。
作者:涛哥,微信公众号:涛哥笔谈。前华为高级产品经理,TOGAF认证专家,PMP认证专家,PPV课数据科学社区创始人,数字化转型实践者
本文由 @涛哥 原创发布于人人都是产品经理。未经许可,禁止转载
题图来自Unsplash,基于CC0协议。
该文观点仅代表作者本人,人人都是产品经理平台仅提供信息存储空间服务。
相关文章
猜你喜欢