每经记者:蔡鼎 每经编辑:兰素英
如果将人工智能(AI)比作孩子,那么Scaling Law(以下简称“规模法则”)就是其重要的“成长密码”:只要“孩子”被给予足够的“营养”,即数据、模型和算力,他就能茁壮成长。
2020年,OpenAI发表论文《神经语言模型的规模法则》(Scaling Laws for Neural Language Models),提出“规模法则”,为大语言模型的出现奠定了语言基础。因此“规模法则”也被视为人工智能的基石。
如今,这一的“规模法则”也正在引领机器人领域开启新世界的大门。
IIIS团队机器人硬件设置 图片来源:《机器人操作模仿学习中的数据规模法则》论文截图
叠毛巾 来源:《机器人操作模仿学习中的数据规模法则》论文
90%的成功率不足以实现商业化,至少要99.9%尽管IIIS团队的研究表明,只需投入相对较少的时间和资源,就有可能学习到一种可在任何环境和对象中零距离部署的单任务策略。现实中,要完成洗衣服、叠衣服等一些在人类看来非常简单的任务,AI依然面临不小的难度。
论文也指出,目前的工作还有一些局限性,他们只关注了单任务策略的数据规模,并没有探索多任务的通用性,因为这需要从数千个任务中收集数据。除了数据规模,IIIS团队还在模型规模化方面有三个重要发现:视觉编码器必须经过预训练和完整的微调,缺一不可;扩大视觉编码器的规模能显著提升性能;扩大扩散模型的规模却没能带来明显的性能提升,这一现象最让人意外。
为了激励更多的研究人员就此进行探索,团队还公布了其代码、数据和模型,希望业界能最终开发出能够解决复杂问题的通用机器人。
IIIS团队在GitHub上开源的代码
来源:《机器人操作模仿学习中的数据规模法则》论文
“人形机器人的ChatGPT时刻”尚未到来在学界的努力之外,企业界也在专注于将通用人工智能引入物理世界,旨在开发大规模人工智能模型和算法,为机器人提供动力。
OpenAI就是其中之一。11月4日,Meta增强现实眼镜“Orion”团队的负责人凯特林·卡林诺夫斯基在社交媒体上宣布,自己已经加盟OpenAI,领导机器人和消费者硬件团队。他在帖子中表示,这份新工作最初将关注OpenAI在机器人领域的工作以及相关的合作,帮助AI“进入物理世界”,解锁对人类的好处。
同日,OpenAI被曝还参与了机器人AI初创公司Physical Intelligence的4亿美元融资轮。本轮融资由亚马逊创始人Jeff Bezos、Thrive Capital和Lux Capital领投。
Physical Intelligence在博客文章中提到,过去八个月里,他们一直在为机器人开发一种“通用”的人工智能模型。Physical Intelligence希望这个模型能成为他们实现最终目标——开发人工通用智能(AGI)的第一步。AGI是指在各种任务上达到或超越人类智能的人工智能技术。
NBD:一些文章将你们最新的研究发现称为“人形机器人的ChatGPT时刻”,您对此有何看法?你认为这个时刻是否已经到来,还是需要更多的技术突破?
胡英东:我并不认为我们已经达到了“人形机器人的ChatGPT时刻”,尽管我们正在朝着这个目标快速前进。ChatGPT的一个关键特征是其非凡的泛化能力——它能够在几乎任何用户定义的任务中表现良好。虽然我们强调机器人对新环境和新物体的泛化能力,但主要的区别在于我们的模型还不是真正通用的,不能处理用户可能给出的各种各样的指令。
NBD:研究已经在多个现实场景中得到了验证,那么您认为这些实验结果有一天能转化为实际应用吗?
胡英东:我相信我们研究的这项技术最终会进入日常实际应用,例如,用于餐馆的服务机器人。更有意义的是,这样的机器人可以应用于养老院,以协助老年人护理,这将是特别有价值和影响的。
每日经济新闻
相关文章
猜你喜欢
成员 网址收录40386 企业收录2981 印章生成229715 电子证书1008 电子名片58 自媒体46281