作者 | Tina、核子可乐
一个成本低速度快,一个代码质量高程序可扩展性好,你会怎么选?
一位名叫 Ab Advany 的技术人员最近接了个小活儿,帮他的一位好友在其工作单位监督编程案例研究。这项案例研究总共花了两周时间,他们聘请了两名程序员为其创建最小可行产品(MVP)。
这两名程序员都是为该机构工作了很长时间的承包商。Ab Advany 之前也曾与二人合作,对两人的背景十分了解。首先是来自德国的 Alex,拥有 19 年编程经验,采取 100%纯手动编程。来自巴基斯坦的 Hamid 仅拥有 4 年开发经验,在编程中采用了手写代码 Copilot GPT-4 无代码开发。
Ab Advany 表示他们原本以为 Hamid 大概能在 8 到 10 周内完成工作,而 Alex 可能要多花上 1、2 周时间。但最终结果却令他们大为意外!Hamid 在一周之内完成了此项目,端到端测试与测试覆盖率均达到 100%;Alex 则只完成了 7%。Hamid 的开发总成本为 3819 美元,Alex 的开发成本则为 3520 美元。
让不使用 AI 的老程序员出局?抗拒 AI 辅助编程会是一场“必败仗”吗?基于大型语言模型的 AI 工具,比如 OpenAI Codex ,或来自微软的 GitHub Copilot ,亦或来自谷歌 DeepMind 的 AlphaCode,已经开始改变许多开发者的工作方式。虽然目前它们只可以用来编写代码片段、发现错误、编写注释、提供建议等,但这并不妨碍让大家见识到它的威力。
去年,谷歌的研究人员发现,人工智能将“编码迭代时间”减少了 6%,这份研究主要针对谷歌内部的 10,000 名开发人员。
GitHub 去年也调查了 2,000 名程序员,了解他们如何使用 GitHub 的 AI 编码助手 Copilot。大多数人表示 Copilot 帮助他们减少挫折感并增加成就感;88% 的人表示这提高了他们的工作效率。在报告中,GitHub 说道:“使用 Copilot 辅助编程的开发人员完成任务的速度明显更快——比不使用它的快 55%。”
虽然生成式 AI 模型和工具还在改进中,但一点也不影响其普及速度,越来越多的开发者开始使用它们。以 GitHub Copilot 为例,微软于 2022 年 6 月首次面向个人推出该工具时,平均有超过 27% 的开发人员代码是由 GitHub Copilot 生成的。到了今年 5 月,微软再次统计时,这个数字已经变成了 46%——而在 Java 编程语言环境中,这个数字跃升到了 61%。
所以 GitHub 大胆断言,“鉴于这项技术可以帮助开发者加快构建速度,所以展望未来,不采用生成式人工智能工具的科技公司将在生产力方面处于明显劣势。”
Ab Advany 分享的案例,也许这并不是让我们单纯地比较哪个方案更好,而是让我们明白,我们已经有了很多选择,AI、低代码等工具都可以用来解决部分问题,那么该是时候让我们再次评估如何让开发人员进一步专注于核心业务逻辑、减少底层开发、让大家更高效更轻松地工作了。
至于 AI 辅助编程是不是未来发展方向?这就像一位网友给 Ab Advany 的评论中那样:“纯粹的非 AI 辅助编程工程师在这里是在打一场必败仗,这很明显……现在谁会在没有 Copilot 的情况下编写代码呢?”
参考链接:
https://twitter.com/advany/status/1664451798793584642
https://archive.ph/o21uE#selection-819.4-819.11
https://github.blog/2023-05-09-how-companies-are-boosting-productivity-with-generative-ai/
本文转载来源:
相关文章
猜你喜欢