·越来越多的数学研究者关注人工智能对该领域的影响,在各种讨论会上辩论,采用不同的AI工具尝试解答数学问题。
·数学是机器学习能做什么或不能做什么的试金石。推理是数学过程的精髓,也是机器学习中尚未解决的关键问题。神经网络以某种方式直观地辨别出了数学真理,但其逻辑“原因”却远非那么明显。
计算机科学家宇怀·“托尼”·吴设想了一位“自动化数学家”——具有“自行解决数学定理能力”的通用研究助理。
数学是试金石
对于这些颠覆式的创新,数学家们做出了不同程度的关注。
哥伦比亚大学的迈克尔·哈里斯(Michael Harris)表达了疑虑,他对研究数学与国防工业之间潜在的目标和价值观冲突感到困扰。在最近的一份时事通讯中,他指出由美国国家科学院组织的一个研讨班——“AI协助数学推理”中,一名演讲者是博思艾伦咨询公司(Booz Allen Hamilton)的代表,该公司是情报机构和军方的承包商。哈里斯希望,能够有更多关于人工智能影响数学研究的讨论。
DeepMind的合作者、悉尼大学的乔迪·威廉姆森(Geordie Williamson)在美国国家科学院的那场聚会上发表了讲话,鼓励数学家和计算机科学家更多地参与此类对话。在洛杉矶的研讨会上,他以改编自乔治·奥威尔1945年文章《你和原子弹》的一句话开始了自己的演讲。威廉姆森说:“考虑到我们所有人在未来五年内都可能受到深刻影响,深度学习并没有引起像预期那么多的讨论。”他认为,数学是机器学习能做什么或不能做什么的试金石。推理是数学过程的精髓,也是机器学习中尚未解决的关键问题。
威廉姆森在接受采访时表示,在他与DeepMind合作的早期,该团队发现了一个简单的神经网络,可以预测他非常关心的数学量,而且它的预测“准确得可笑”。威廉姆森努力想要理解其中的原因,但是无法理解,DeepMind的其他人也都做不到,而这个原因将成为一个定理的基础。就像欧几里得一样,神经网络以某种方式直观地辨别出了数学真理,但其逻辑“原因”却远非那么明显。
在洛杉矶的研讨会上,一个突出的主题是如何将直觉和逻辑结合起来。但威廉姆森观察到,人们很少有动力去理解机器学习的黑箱。他说:“这是科技界的黑客文化,如果它在大部分时间都有效,那就太好了。”但这种情况让数学家们感到不满意。
他补充说,试图理解神经网络内部发生的事情会引发“令人着迷的数学问题”,而寻找答案为数学家“为世界做出有意义的贡献”提供了机会。
相关文章
猜你喜欢