> 自媒体 > (AI)人工智能 > GPT-4混合大模型?研究证明MoE+指令调优确实让大模型性能超群
GPT-4混合大模型?研究证明MoE+指令调优确实让大模型性能超群
来源:机器之心Pro
2023-07-15 10:55:50
583
管理

机器之心报道

编辑:小舟、陈萍

谷歌、UC 伯克利等证明 MoE 指令调优起到了 1 1 > 2 的效果。

自 GPT-4 问世以来,人们一直惊艳于它强大的涌现能力,包括出色的语言理解能力、生成能力、逻辑推理能力等等。这些能力让 GPT-4 成为机器学习领域最前沿的模型之一。然而,OpenAI 至今未公开 GPT-4 的任何技术细节。

上个月,「天才黑客」乔治・霍兹(George Hotz)在接受一家名为 Latent Space 的 AI 技术播客的采访时提到了 GPT-4,并称 GPT-4 其实是一个混合模型。具体来说,乔治・霍兹称 GPT-4 采用由 8 个专家模型组成的集成系统,每个专家模型都有 2200 亿个参数(比 GPT-3 的 1750 亿参数量略多一些),并且这些模型经过了针对不同数据和任务分布的训练。

论文地址:https://arxiv.org/pdf/2305.14705.pdf

稀疏混合专家模型是一种特殊的神经网络架构,可以在不增加推理成本的情况下,为大型语言模型(LLM)增加可学习的参数。指令调优(instruction tuning)是一种训练 LLM 遵循指令的技术。该研究发现 MoE 模型比密集模型更能从指令调优中获益,因此提出将 MoE 和指令调优结合起来。

该研究在三种实验设置下进行了实证研究,包括

在没有指令调优的情况下在单个下游任务进行直接微调;指令调优后对下游任务进行 in-context 少样本或零样本泛化;指令调优后对单个下游任务进行进一步微调。

在第一种情况下,MoE 模型总体上不如具有相同计算能力的密集模型。然而,随着指令调优的引入(第二和第三种情况),FLAN-MoE_32B(Fine-tuned LAnguage Net,简写为 Flan,是一种经过指令调优的模型,Flan-MoE 即为指令调优 MoE)在四个基准任务上性能超过了 FLAN-PALM_62B,却只用了三分之一的 FLOPs。

如下图所示,在使用指令调优前,MoE→FT 不如 T5→FT。指令调优后,Flan-MoE→FT 优于 Flan-T5→FT。MoE 从指令调优中获得的收益 ( 15.6) 大于密集模型 ( 10.2):

看来 GPT-4 采用混合模型还是有点根据的,MoE 确实能够从指令调优中获得更大的收益:

方法概述

研究者在 FLAN-MOE (是一组经过指令微调的稀疏混合专家模型)模型中使用了稀疏激活 MoE(Mixture-of-Experts)。此外,他们还用 MoE 层替换了其他 Transformer 层的前馈组件。

每个 MoE 层可理解为一个「专家」,然后,使用 softmax 激活函数对这些专家进行建模,得到一个概率分布。

尽管每个 MoE 层有很多参数,但专家是稀疏激活的。这意味着对于给定的输入 token,只使用有限的专家子集就能完成任务,从而为模型提供了更大的容量。

对于具有 E 个专家的 MoE 层,这实际上提供了 O (E^2) 种不同的前馈网络组合,从而实现了更大的计算灵活性。

由于 FLAN-MoE 是经过指令调优的模型,因而指令调优非常重要,该研究在 FLAN 集合数据集的基础上对 FLAN-MOE 进行微调。此外,该研究将每个 FLAN-MOE 的输入序列长度调整为 2048,输出长度调整为 512。

实验与分析

平均而言,在不增加任何额外计算的情况下,Flan-MoE 在所有模型尺度上都优于密集的同类产品 (Flan-T5)。

专家数量。图 4 显示,随着专家数量的增加,初始时,模型受益于更丰富的专门子网络,每个子网络能够处理问题空间中的不同任务或方面。这种方式使得 MoE 在处理复杂任务时具有很强的适应性和效率,从而整体上改善性能。然而,随着专家数量的不断增加,模型性能增益开始减少,最终达到饱和点。

图 3 和表 1 详细研究了不同的路由决策如何影响指令调优性能:通过 FLAN-Switch 和 FLAN-GS 策略之间的比较可以得出,激活更多的专家会在四个基准测试中提高性能。在这些基准测试中,MMLU-Direct 模型显示出最显著的改进,对于 BASE/LARGE 尺寸的模型,从 38.0% 增加到 39.9%。

值得注意的是,与等效容量的密集模型相比,指令调优显著放大了 MoE 模型在保留 MMLU、BBH 和内部 QA 和推理基准测试方面的性能。对于较大的 MoE 模型,这些优势进一步放大。例如,指令调优使 ST_32B 的性能提升了 45.2%,而对于 FLAN-PALM_62B,这种改进相对较小,约为 6.6%。

相反,freeze 门控函数会使模型性能略有改善,尽管并不明显。研究者推测这一观察结果与 FLAN-MOE 的欠拟合有关。该研究还进行了消融实验来探究下图 5 描述了微调数据效率消融研究。

最后,为了比较直接对 MoE 进行微调和 FLAN-MOE 之间的差距,该研究对单任务微调的 MoE、单任务微调的 FLAN-MoE 和密集模型进行了实验,结果如下图 6 所示:

感兴趣的读者可以阅读论文原文,了解更多研究内容。

0
点赞
赏礼
赏钱
0
收藏
免责声明:本文仅代表作者个人观点,与本站无关。其原创性以及文中陈述文字和内容未经本网证实,对本文以及其中全部或者 部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。 凡本网注明 “来源:XXX(非本站)”的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对 其真实性负责。 如因作品内容、版权和其它问题需要同本网联系的,请在一周内进行,以便我们及时处理。 QQ:617470285 邮箱:617470285@qq.com
相关文章
深度关注丨汽车消费向“新”而行
中央纪委国家监委网站 李云舒图为近日,在河北省邯郸市永年区汽车促销活..
裁员、召回、无赔偿!理想汽车不谈“人文关怀”
原来车企不仅可以召回汽车,还可以“召回”员工。继大规模裁员一月之后,..
阿维塔总裁陈卓:中国汽车市场现状与重庆火锅非常相似,都是“热辣滚烫”..
“2024中国汽车重庆论坛(CACS2024)”于6月6日-8日举行。阿维塔科技总裁..
大众汽车集团三年内“动刀”裁员20%?最新回应→
每经记者:苗诗雨 每经编辑:王月龙,孙磊日前,《每日经济新闻》记者获悉..
2024款凯迪拉克锐歌Lyriq评测:超值的豪华电动汽车
2024 款凯迪拉克 Lyriq 的尾部无疑是其最具争议的角度。凯迪拉克尾部几乎..
宝马打五折,4S店仅剩1辆现车,合资豪华品牌汽车溢价能力遭重构..
风口财经记者 王贝贝近日“宝马i3腰斩式大降价”的话题登上热搜。官方报..
退市风险叠加人事更迭 极星汽车危机重重
经济观察报 记者 王帅国 连续十余天股价低于1美元面临退市风险,中国市场..
6大国产汽车品牌,高品质不贵,买车必看
质量最好,性价比高的汽车品牌,选择这6款国产品牌,准没错这车可是定位..
汽车认证存在造假行为,丰田、本田、马自达日本高管鞠躬道歉..
环球网及多家媒体报道,据日本国土交通省发布消息,鉴于日本大发工业等公..
关于作者
唐师(普通会员)
文章
1009
关注
0
粉丝
0
点击领取今天的签到奖励!
签到排行

成员 网址收录40404 企业收录2983 印章生成238804 电子证书1060 电子名片60 自媒体58417

@2022 All Rights Reserved 浙ICP备19035174号-7
0
0
分享
请选择要切换的马甲:

个人中心

每日签到

我的消息

内容搜索