国内首个医疗大模型,已经在“接诊”患者了。
最近,一组AI医生医院真实站岗数据曝光:
共接诊120多名患者,从问诊、检查到诊疗方案全流程覆盖;涉及心内科、消化内科、呼吸内科、内分泌科、肾脏内科、骨科、泌尿外科七大疾病科室,患者疾病类别多元,复杂程度不一;医学水平不输国内三甲医院主治医生,与真人医生诊疗方案一致性达到96%;来自北大人民医院、中日友好医院、阜外医院和友谊医院等国内顶尖医院的7位专家教授围观点赞。这样公开化、规模化的AI医生评测,在国内是首次,放眼全球也是第一次见到。更想不到的是,背后的主角MedGPT——基于Transformer的1000亿参数大模型,才刚问世一个月。
目前在实际诊疗中,它已经具备多轮连续对话和多模态能力。而在未来规划中,MedGPT还会上线医疗版的Plugin Store,预计将搭载1000 医疗应用,极大丰富AI医生的诊疗工具,提升诊疗效率。
从上述这些数据与表现来看,96%的一致性,想不到。这样的迭代速度,更想不到。
MedGPT直播首秀:接待百名患者
这场直播首秀其实是一场实打实的人机医学一致性评测。除了AI医生MedGPT外,还有10位来自四川大学华西医院的主治医师共同参与。为了保证评测的权威性和科学性,一方面由国内顶尖医院的专家教授组成评审团,进行审核和多维度打分。另一方面,整个流程也进行了特别的设计。简单来说,患者进屋问诊,但是是和有医师执业资格的“翻译员”对话。翻译员把患者主诉在电脑上分别传递给真人医生和AI医生,如此多轮往复,最终根据检查结果,给出诊断。就像当初AlphaGo大战围棋界,中间帮助Alpha执行“落子”动作的执棋手,就是这个“翻译员”的角色了。
这样一来AI医生与真人医生之间互不干涉,且条件基本一致,双方就能给出独立的判断。
最终,经过一天的鏖战,真人医生综合得分为 7.5分,AI 医生综合得分为 7.2分,比分结果上一致性达到了96%。
在评审过程中,专家们也发现了一些意想不到的“惊喜”:
比如,出现漏诊误诊的概率比较小。北大人民医院薛峰主任就发现,MedGPT通过多轮询问,根据患者脚底板疼痛症状,竟然在最后可以推断诊断出「有可能出现压迫颈神经」这样的结果。这也就是说,从知识储备上,AI医生其实可能高于一个经验不太丰富的医生。
另外,MedGPT就诊时的“沉稳”表现也得到了点赞。中日友好医院心内科主任医师任景怡就表示:我觉得最好的一点是当诊断尚不明确时,MedGPT并不会轻易给出结论,而是要坚持通过继续问诊或检查收集更多信息。
于是即便MedGPT还存在一定问题,她还是给了比真人医生还高的分数,并直言:这是里程碑的结果。
但能做题并不能意味着就能落地应用。
以GPT-4为首的通用大模型,他们高度依赖文本统计概率生成答案。相信大家也能感知到它很擅长一本正经地胡说八道,如果应用在日常交流,倒也乐在其中。但要是应用到行业中去,往往非专业人士会难以察觉,这就会引发各种风险,尤其又像医疗这种民生行业,对内容生成的把控要求更高,容不得半点差池。更不用说医疗本身覆盖知识面广而繁杂,而且从整个就医流程来看,诊前、诊中、诊后都涉及各种各样长尾任务,所需高质量数据可能并不比通用模型小,且大部分数据不是靠网上摘取。
比如,在为患者输出正式答案前,会先经过临床医学规则器的校验。还有招募真实医生在电脑前判断,然后将两者结果交给专家委员会评议,以此来对标真实医生。
基于这样的方法论,医联团队率先为专业大模型的打造在行业中打了个样。
医疗AI2.0大幕拉开
最后回到MedGPT公开评测这件事情本身,也带来了大模型发展进程中的三点趋势。
第一、医疗AI2.0大幕已经拉开,系统复杂性问题将会得到解决。
以大模型为代表的AI2.0时代的到来——对话即入口,让所有的应用场景都得到了重新定义。被AI所辐射的千行百业也深处于变革之中。
以往AI 1.0,NLP、CV、多模态等单点技术蓬勃发展,医疗AI应用场景丰富多样,他们强规则、具有可控性。但场景、数据之间没有打通,导致泛化能力不强,无法处理系统性、复杂性的问题。得益于Transformer,打破了模态、数据、任务场景之间的壁垒。医疗场景中,利用海量医学文本与数据中,进行高并发/长距离学习整合,一些复杂性、系统性问题可以得到解决。
如果继续畅想,结合医联的云药房、云检验等云化能力,不仅是AI医生本身疾病管理能力会得到提升,患者甚至可以摆脱地理限制,轻松完成所有疾病从预防、诊断、治疗、康复的全流程管理路径。
这其实也并不难想象,只需要知道有一个能看各个专科领域并且比肩三甲医院医生的AI医生能够24小时在你身边为你出诊,同时,检验检测服务在家附近1公里就能全部完成。有去三甲医院排队挂号看病经历的同学应该都懂——专家挂不上号、检验检查等一个月,这都是时有发生的事情。降本增效、解决行业问题,走入医疗的下一个时代,就是靠MedGPT这类专业模型做的。
第二、大模型的行业红利并非在科技巨头手中,而在有场景有数据的玩家手里。
相信大家都或多或少有所看到,目前医疗领域的专用大模型和产品正在不断问世,最具代表性的产品来自谷歌和微软这两个大厂。谷歌Med-PaLM 2目前正在尝试多模态能力,比如自己检查X光片后给出诊断。在今年晚些时候将对一小部分谷歌云用户开放。
还有被微软200亿美元收购的Nuance,借由微软OpenAI合作之便,正在将GPT-4集成到临床笔记软件DAX中,以减轻临床医生的负担。前者的大模型还没有到真正落地,后者无非是集成通用大模型的API,其行业的准确性和一致性无法得到保障。但MedGPT一亮相就惊艳全场,并拿下多个行业首次:
首次突破AI医生多轮对话的难题;
首次实现从有效问诊到医学检查的跨越;
首次实现AI给出准确诊断和治疗方案;
首次AI具备全流程诊断能力……
这与垂直领域深耕、有场景有数据有关。医联在医疗行业有9年深耕,积累了丰富的知识、数据和应用,构筑起了深厚的技术和用户壁垒。一旦实现大模型技术的应用, 在现有的用户场景基础之下,将会迅速规模化落地。这是其他想入局者无法拥有的先发优势。上一次AI浪潮来袭时,最终也是场景玩家率先吃掉AI红利。现在同样也依旧是场景玩家吃掉大模型红利,只不过技术路径已经明晰,落地速度自然要比以往快得多。
第三,医疗AI落地提速,也侧面印证了大模型的发展趋势——雪球效应展现,从技术到应用部署的飞轮会越转越快。
ChatGPT最开始只会一本正经地胡说八道,短短几个月内基于用户反馈、插件开发生态,真正被各行业的人加入到工作流中,并上线了端侧应用。还有Midjourney、Stable Diffusion被人诟病无法画手的问题,也能在短短几周内解决;以及国内大模型涌现、更新速度加快,文心一言一个月能迭代四次等等。
“大模型-应用-数据”的加速闭环一旦打通,那么产业落地的速度将会比上一波浪潮更快。
而医联大模型MedGPT一个月就进入到真实患者全流程测试阶段。在此之后,根据数据飞轮迭代大模型,落地速度只会越来越快。
或许很快,医疗AI2.0就会惠及每个人。
来源|量子位
相关文章
猜你喜欢