明敏 发自 凹非寺
量子位 | 公众号 QbitAI
没想到,打开AI黑盒这件事,可能还要靠AI自己来实现了。
OpenAI的最新研究来了一波大胆尝试:
让GPT-4去解释GPT-2的行为模式。
结果显示,超过1000个神经元的解释得分在0.8以上——也就是说GPT-4能理解这些神经元。
要知道,“AI黑箱难题”长期以来是一个热议话题,尤其是大语言模型领域,人类对其内部工作原理的理解还非常有限,这种“不透明化”也进一步引发了人类对AI的诸多担忧。
目前推进AI可解释性研究的一个简单办法,就是逐个分析大模型中的神经元,手动检查以确定它们各自所代表的数据特征。
但对于规模已经达到百亿、千亿级别的大规模神经网络来说,工作量和工作难度就都涨了亿点点吧。
由此,OpenAI的研究人员想到,干嘛不让AI去自动化搞定这个大工程?
在博客给出的示例中,GPT-4的得分为0.34.
使用这个办法,研究人员让GPT-4解释了GPT-2一共307200个神经元。
OpenAI表示,使用这一基准,AI解释的分数能接近人类水平。
从总体结果来看,GPT-4在少数情况下的解释得分很高,在0.8分以上。
他们还发现,不同层神经元被激活的情况,更高层的会更抽象。
“AI教人类关掉AI中存在风险的神经元。”
还有人开始畅想,AI理解AI会快速发展为AI训练AI(已经开始了),然后再过不久就是AI创造新的AI了。
当然这也引发了不少担忧,毕竟GPT-4本身不还是个黑盒嘛。
人类拿着自己不理解的东西,让它解释另一个自己不理解的东西,这个风险emm……
这项研究由OpenAI负责对齐的团队提出。
他们表示,这部分工作是他们对齐研究的第三大支柱的一部分:
我们想要实现自动化对齐。这种想法一个值得思考的方面是,它可能随着AI的发展而扩展更多。随着未来AI模型变得越来越智能,我们也能找到对AI更好的解释。
论文地址:https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
参考链接:[1]https://openai.com/research/language-models-can-explain-neurons-in-language-models[2]https://www.globalvillagespace.com/tech/openais-tool-explains-language-model-behavior/
— 完 —
量子位 QbitAI · 头条号签约
关注我们,第一时间获知前沿科技动态
相关文章
猜你喜欢