> 自媒体 > (AI)人工智能 > OpenAI震撼研究:用GPT-4解释30万神经元,原来AI黑盒要AI去打开
OpenAI震撼研究:用GPT-4解释30万神经元,原来AI黑盒要AI去打开
来源:量子位
2023-05-17 20:01:54
377
管理

明敏 发自 凹非寺

量子位 | 公众号 QbitAI

没想到,打开AI黑盒这件事,可能还要靠AI自己来实现了。

OpenAI的最新研究来了一波大胆尝试:

让GPT-4去解释GPT-2的行为模式。

结果显示,超过1000个神经元的解释得分在0.8以上——也就是说GPT-4能理解这些神经元。

要知道,“AI黑箱难题”长期以来是一个热议话题,尤其是大语言模型领域,人类对其内部工作原理的理解还非常有限,这种“不透明化”也进一步引发了人类对AI的诸多担忧。

目前推进AI可解释性研究的一个简单办法,就是逐个分析大模型中的神经元,手动检查以确定它们各自所代表的数据特征。

但对于规模已经达到百亿、千亿级别的大规模神经网络来说,工作量和工作难度就都涨了亿点点吧。

由此,OpenAI的研究人员想到,干嘛不让AI去自动化搞定这个大工程?

在博客给出的示例中,GPT-4的得分为0.34.

使用这个办法,研究人员让GPT-4解释了GPT-2一共307200个神经元。

OpenAI表示,使用这一基准,AI解释的分数能接近人类水平。

从总体结果来看,GPT-4在少数情况下的解释得分很高,在0.8分以上。

他们还发现,不同层神经元被激活的情况,更高层的会更抽象。

“AI教人类关掉AI中存在风险的神经元。”

还有人开始畅想,AI理解AI会快速发展为AI训练AI(已经开始了),然后再过不久就是AI创造新的AI了。

当然这也引发了不少担忧,毕竟GPT-4本身不还是个黑盒嘛。

人类拿着自己不理解的东西,让它解释另一个自己不理解的东西,这个风险emm……

这项研究由OpenAI负责对齐的团队提出。

他们表示,这部分工作是他们对齐研究的第三大支柱的一部分:

我们想要实现自动化对齐。这种想法一个值得思考的方面是,它可能随着AI的发展而扩展更多。随着未来AI模型变得越来越智能,我们也能找到对AI更好的解释。

论文地址:https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html

参考链接:[1]https://openai.com/research/language-models-can-explain-neurons-in-language-models[2]https://www.globalvillagespace.com/tech/openais-tool-explains-language-model-behavior/

— 完 —

量子位 QbitAI · 头条号签约

关注我们,第一时间获知前沿科技动态

0
点赞
赏礼
赏钱
0
收藏
免责声明:本文仅代表作者个人观点,与本站无关。其原创性以及文中陈述文字和内容未经本网证实,对本文以及其中全部或者 部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。 凡本网注明 “来源:XXX(非本站)”的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对 其真实性负责。 如因作品内容、版权和其它问题需要同本网联系的,请在一周内进行,以便我们及时处理。 QQ:617470285 邮箱:617470285@qq.com
相关文章
关于作者
巫月(普通会员)
文章
623
关注
0
粉丝
0
点击领取今天的签到奖励!
签到排行

成员 网址收录40369 企业收录2981 印章生成216706 电子证书945 电子名片57 自媒体34015

@2022 All Rights Reserved 浙ICP备19035174号-7
0
0
分享
请选择要切换的马甲:

个人中心

每日签到

我的消息

内容搜索