全文共3751字,预计学习时长10分钟
图源:unsplash
很多人担心,通过限制对代码和受训算法的访问,人工智能的“民主化”,即任何人都可使用人工智能,会受OpenAI威胁。“使用人工智能”这一用语是多层面的,意思是使用计算能力、数据集以及算法本身。诸如谷歌的TensorFlow和脸书的PyTorch这类开源框架使得算法易于构建和共享,还存在其他很多开源数据集。
然而,计算能力来自硬件,是一种有限的物理资源,大公司和像OpenAI这样资金充足的研究机构更容易获得该资源。
如果OpenAI的实验被证明是人工智能的发展方向,同时算法的扩大转化为性能的提高,那么消费不起先进人工智能的人就无法使用它了。这还会允许拥有资源的大公司制定规则,决定谁有权使用某些人工智能算法。例如,他们可以利用API进行设置,并对访问和使用算法进行收费。
乔治亚理工学院(Georgia Institute of Technology)研究自然语言处理的人工智能教授马克·瑞德尔(Mark Riedl)表示:“如果确信实现更好人工智能的方法实际上是实现更大规模,那么谁能拥有更优人工智能就由OpenAI决定了。”
瑞德尔对OpenAI是否会监视其新API的所有使用情况,以确定是否被用于恶意目的表示质疑,OpenAI曾花了大量精力来思考它的算法会如何被滥用。“OpenAI是否会查看输出,以判断他们的技术是否得到恰当使用?鉴于其宗旨,以及这与他们新盈利模式相冲突,这似乎很关键。他们能做到大规模监控吗?”
并非所有人都认同OpenAI“越大越好”的方法是人工智能的发展方向。例如,自然语言处理研究人员梅拉妮·米歇尔(Melanie Mitchell)就对GPT-3进行了“模仿”测试,要求算法识别特定字母序列的变化模式。如果“abc”变为“abd”,那么“efg”会变成什么?
上世纪80年代,米歇尔开发了一种算法来解决这类人类一直以来所进行类比的微型模拟测试。要正确地进行类比,必须理解所有组件之间的关系。在字母表的例子中,算法必须了解字母表的顺序和每个字母的位置。虽然该算法在众多测试中表现良好,但米歇尔发现,它也无法掌握其他算法数十年前已掌握的一些简单概念。
图源:unsplash
米歇尔说:“在研究方面,我个人认为,在一个问题上投入过多的计算和参数可能会把人工智能逼进死胡同。如果我们的目标是制造强大、具有普遍智能的机器,我认为这无法取得真正的进展。”
她承认,在制造需要深度学习的人工智能产品时,庞大的计算能力让科技巨头获得优势,但反之并不是所有现代问题都需要高能耗的深度学习算法,不是解决每个问题都需要达到GTP-3的规模。
米切尔在测试该算法时写道:“GPT-3的性能令人惊叹,但它也和当今最先进的人工智能系统中的很多情况类似:似乎很智能的性能中夹杂着一些非人类错误,而且我们搞不清楚它表现好或犯错误的原因。”
留言点赞关注
我们一起分享AI学习与发展的干货
如转载,请后台留言,遵守转载规范
相关文章
猜你喜欢