GPT-4 和强化学习强强联合,机器人的未来将是什么样子?
在学习方面,GPT-4 是一个厉害的学生。在消化了大量人类数据后,它掌握了各门知识,甚至在聊天中能给数学家陶哲轩带来启发。
与此同时,它也成为了一名优秀的老师,而且不光是教书本知识,还能教机器人转笔。
此外,Eureka 还实现了一种新型的 in-context RLHF,它能够将人类操作员的自然语言反馈纳入其中,以引导和对齐奖励函数。它可以为机器人工程师提供强大的辅助功能,帮助工程师设计复杂的运动行为。英伟达高级 AI 科学家 Jim Fan 也是该论文的作者之一,他将这项研究比喻为「物理模拟器 API 空间中的旅行者号(美国研制并建造的外层星系空间探测器)」。
值得一提的是,这项研究是完全开源的,开源地址如下:
实验实验部分对 Eureka 进行了全面的评估,包括生成奖励函数的能力、解决新任务的能力以及对人类各种输入的整合能力。
实验环境包括 10 个不同的机器人以及 29 个任务,其中,这 29 个任务由 IsaacGym 模拟器实现。实验采用了 IsaacGym (Isaac) 的 9 个原始环境,涵盖从四足、双足、四旋翼、机械手到机器人的灵巧手的各种机器人形态。除此以外,本文还通过纳入 Dexterity 基准测试中的 20 项任务来确保评估的深度。
Eureka 还能产生新颖的奖励。本文通过计算所有 Isaac 任务上的 Eureka 奖励和人类奖励之间的相关性来评估 Eureka 奖励的新颖性。如图所示,Eureka 主要生成弱相关的奖励函数,其表现优于人类的奖励函数。此外,本文还观察到任务越难,Eureka 奖励的相关性就越小。在某些情况下,Eureka 奖励甚至与人类奖励呈负相关,但表现却明显优于人类奖励。
本文还研究了从人类奖励函数初始化开始是否对 Eureka 有利。如图所示,无论人类奖励的质量如何,Eureka 都会从人类奖励中改进并受益。
人形机器人通过 Eureka 学习跑步步态。
相关文章
猜你喜欢