贾浩楠 发自 凹非寺 量子位 报道 | 公众号 QbitAI
GPT-3,是个严重偏科的“文科生”。
UC伯克利的研究人员,在对类似GPT-3的大型语言模型进行测试后发现,数学,就是这类AI的盲区。
12500道高中数学题,GPT-3的正确率最低不到3%,最高也没超过7%。
完全不合格啊~
此外,AI解数学题时对不同解题方法的选择组合,也是衡量算法能力的参考。
所以,即便GPT-3平时面对的多是文本任务,但让它去学数学,依然有助于人们弄明白超大模型处理数学推理任务的特点。
之前的研究已经证明,牢固掌握数学概念对AI很重要。
例如,OpenAI最近推出了GPT-f,这是Metamath形式化语言的自动证明器和证明助手。
GPT-f对一些数学问题做出的证明,已经被Metamath主库所接受,这是AI的数学论证第一次数学社区所采用。
Facebook方面也声称已经成功实验了数学AI算法。在去年1月的一篇博客文章中,该公司的研究人员表示,他们已经教会了一个模型将复杂的数学方程视为一种语言,然后将解题过程视为翻译问题。
而在对AI进行训练测试后,发现成绩依然不理想。
数据集中的分步解决方案,能让语言模型像人类数学家一样使用 “短期记忆”。
即模型不必马上得出正确答案,而是可以逐步探索解法一步步走向正确答案。
但即使有了解决方案,研究者发现,对于GPT-2和GPT-3来说,准确率仍然很低.
从上图结果中能看出,让模型在产生答案之前生成自己的解决方案,实际上降低了准确性。因为在许多错误案例中,尽管解题步骤与问题相关,但它们是不合逻辑的。
此外,简单地增加模型中的训练时间和参数数量,有时会提高性能。但事实证明,这样做的代价过于高,训练的时间和能耗都大大增加。
而在AMPS上进行预训练可将准确率提升约25%,这相当于将模型大小提高15倍。
所以,尽管恶补了12500道高中数学竞赛题,GPT-3还是不及格。
但研究人员认为,让AI学会分步解题仍然有进步意义。
与直接在问题和答案上进行训练相比,MATH上训练过的模型,可以提高10%的相对准确率。
最重要的,是模型“掌握”了一些基本数学知识。在一些错误的解法下,AI已经懂得调用相关的公式定理,而不是胡言乱语一通。
AI数学竞赛的第一课,并不是毫无收获。
GPT-3也不要灰心,伯克利的团队说了,随着对模型的改进,今后它们的数学推理能力会越来越强。
MATH和AMPS现在都已开源,有兴趣的研究者可以直接下载:
相关文章
猜你喜欢